Multipage Template Example Tied to NGSS Standards

Establish Evidence	Hands-on Activities	Standards Connections	
 What evidence-based experience will students have that allow them to construct a scientific claim? 	Students investigate how changing the force and mass separately in an investigation can influence a car's speed.	 SEP Checklist¹: Asking questions and defining problems Planning and carrying out investigations Constructing explanations (for science) Analyzing and interpreting data <u>CCs Checklist²:</u> Patterns Cause and effect 	
Materials	Cars, Ramps, Tracks, Photogate Timers, Added Mass, and String.		
 Procedures What procedural explanations might teachers need to explain (NOT mini-content explanations)? 	• Students will roll cars on level track and use a pull force to move the car. Students can tie a string to the front of the car and add mass. The spring and mass are looped through a pulley. When the mass is released, it falls to the ground and pulls the car.		
Safety	 Wear sanitized, indirectly vented chemical splash safety goggles Use caution when working when dropping masses to propel the car. Both the dropped mass and car could injure students. Have direct adult supervision if you are working cars and ramps Wash your hands with soap and water after completing this activity 		
Establish Content	Minds-on Activities	Disciplinary Core Ideas (DCIs) ³	
 What content will students make a claim about and serve as the context for science learning? 	Students create evidence-based claims (1) when the pull force is constant, adding mass, makes the car's speed slower. (2) when the pull force is increased, and the mass is constant, the car's speed increases.	Newton's second law accurately predicts changes in the motion of macroscopic objects.	

NGSS Performance Expectation⁴

What specific components of the PE does the evidence-based experience target? •

Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration (HS-PS2-1; NGSS Lead States).

¹ Activities directly relate to helping students gain proficiencies of SEPs

² Students think logically by using CCs to make sense of data related to content.

³ Students develop a conceptual understanding of the DCI

⁴ Students understanding of the conceptual ideas undergirding the PE are used to develop mathematical understanding.

Design Questions Stage 2: Pinpoint Phenomena that Hook Learning			
Components	Instructional Activities	Connection to NGSS ⁵	
Situate Learning: • How can teachers motivate students and captivate their attention using science phenomena or	Formative assessment probe used to assess student's knowledge of how force and mass are involved in the speed of a bike racer. Follow-up assessment item asking students about where their ideas came from.	 SEP Checklist: Asking questions and defining problems Planning and carrying out investigations 	
relevant life experiences? Prior Knowledge: • What specific ideas or	Students have incomplete understandings of how forces and motion are related (Driver, Squires, Rushworth, and Wood-Robinson 1994)	CCs Checklist: • Patterns • Cause and effect	
misconceptions can teachers pre- assess during the engage phase?	Students will learn how force, mass, and speed are related?	DCIs: Newton's second law accurately predicts changes in the motion of macroscopic objects	
 Learning Targets: What are the content-based learning targets for the lesson? What are the SPE learning targets for the lesson? 	Students will learn how to perform a valid and reliable investigation of force and motion		

⁵ Activities is pivotal in building an understanding of SEPs, CCs, and DCIs (activity on their own do not wholly and explicitly accomplish goals of Standards).

Design Questions Stage 2: Use Authoritative Explanations to Extend Learning		
Components	Instructional Activities	Connection to NGSS
Scientific Principles What underlying principles do teachers need to help students formulate?	Acceleration is a change in speed or change in direction Newton's Second Law (F=MA)	 SEP Checklist⁶ Constructing explanations (for science)
Concepts and Facts What "terms" and "concepts" do teachers need to introduce that are essential for understanding?	Acceleration	<u>CCs Checklist⁷</u> Cause and effect DCIs ⁸ Newton's second law accurately predicts changes in the motion of
Non-Essential Ideas What other terms or ideas are related to the content and considered "nice to know," non- essential topics OR ideas that will be important in another unit?	Slope	macroscopic objects

⁶ Activity creates the conceptual underpinnings necessary to develop mathematical understanding

⁷ Explanations help develop the causal relationship of the variables in Newton's Second law

⁸ Explanation helps students learn how mathematical relationships and understanding variables can allow them to predict the outcomes of an interaction.

Design Questions Stage 2: Provide Transferring Practice		
Components	Instructional Activities	Connection to NGSS
New and Different Situations • What hands-on investigation can students have to test the idea in a new situation or build a new idea in a similar situation?	Students determine whether cars speed up on the level and sloped track and whether changing the pull force and mass of the car is related to whether a car accelerates	 SEP Checklist⁹ Asking questions and defining problems Planning and carrying out investigations Constructing explanations (for science) and designing solutions (for engineering) Using mathematics and computational thinking Analyzing and interpreting data <u>CCs Checklist¹⁰</u> Patterns Cause and effect Scale, proportion, and quantity DCIs ¹¹ Newton's second law accurately predicts changes in the motion of macroscopic objects

 ⁹ Elaboration activities allow students to test their abilities to do science using SEPs validly and reliably.
 ¹⁰ Students think logically about their data using CCs in a more independent way to construct understanding
 ¹¹ Activities promote the application of mathematical thinking to students' firsthand experiences with data

Design Questions Stage 2: Include growth indicators for students and teachers		
Components	Instructional Activities	Connection to NGSS ¹²
 Reflecting on thinking How will students think about their developing knowledge? 	Students to fill in the blanks for these starter prompts: At first, I thought, but now I think , because	 SEP Checklist Obtaining, evaluating, and communicating information
		 <u>CCs Checklist</u> Patterns Cause and effect
		DCIs Newton's second law accurately predicts changes in the motion of
 Evaluating Learning What assessment will be used to determine whether students have gained the necessary abilities and knowledge? 	Students evidence-based claims from the acceleration lab	macroscopic objects.

¹² Students must show their developing understanding using a metacognitive approach and demonstrate that they have gained a more accurate understanding.